Soundproof Your Smart Home

As the amount of technology and automation grows in new “Smart Homes” across America, there is another silent, growing problem – soundproofing. These homes are outfitted with 7.1 speaker systems, entertainment centers, in-home theaters, and even music studios. However, all of this technology integration can create a noisy environment that installation firms don’t always know how to address.

In these cases, a systematic approach to acoustics and soundproofing should be considered. Often-times there are 1-2 “critical” areas in the home that must be addressed above all others. Whether it is the source room (outlined above), receiving room (such as a Home Office or Master Bedroom), or flanking paths (outlets, ducts, etc.), the designer should consider the cost and schedule impacts of improving the STC or IIC ratings of the systems.

All acoustical designs begin with the Source-Path-Receiver approach to determine how best to treat the problem. It can be very cost-effective to soundproof a theater room with soundproofing membranes, for instance, but a shared ducting system between the two may limit the effectiveness of this approach. By beginning with a general approach, the designer may find multiple solutions, then down-select to the one that is most cost-effective.

Options available to designers include:

  • Improving STC performance of walls – all walls do not need to be treated equally. If the theater and master bedroom are completely isolated, then utilize more cost-effective approaches in other locations.
    • Staggered or double-stud walls
    • Soundproofing Membranes
    • Fiberglass or Mineral Wool insulation
    • Locating buffer areas (closets, pantries) around louder areas (AC units)
  • Improving IIC performance of floors
    • Using higher-IIC top floors, especially plush carpet
    • Using underlayments, especially under poor performers, such as hardwood or tile
    • Resiliently-mounted ceilings where possible
  • Treating Flanking Paths – perhaps most critical, especially in smart homes
    • Caulk all wall penetrations (ducting, pipes, etc.)
    • Use putty pads and caulk heavily around outlets on critical partitions
    • Use solid core doors with tight seals around the threshold and jamb
    • Use branch ducting that separates vents going to and from studios or other loud locations to other critical locations in the home

An experienced soundproofing designer and installation team will consider all soundproofing options, and implement the one that is most cost-effective and beneficial to the home owner.

Soundproofing a Smart Home

A new-construction custom home was being completed in Tampa, FL in February 2017. Outfitted with some of the most recent technology, the owner was concerned about excessive noise from the playroom and entertainment room upstairs, as well as insulating the Master Bedroom downstairs. The framing was made of 6” wood studs, with ceilings at 12’ and an isolated Master Bed-Bath suite.

After an initial site visit, we determined the ideal approach of implementing a soundproofing membrane directly to the studs downstairs, and completely isolating the master bedroom suite. Upstairs, the Wall Blokker PRO was utilized in the entertainment and playrooms to ensure the speaker system would not disrupt activity in other portions of the home. Our approach was consistent with general guidelines to soundproofing a smart home.

While the initial discussions also included membrane in a side room, we decided to remove the STC product at that location due to the flanking paths available in the doorways (a critical weak-link often overlooked in the soundproofing schema).

The smart home owner was also interested in soundproofing the 2nd story flooring system, since the footfall of children and visitors had been easily audible in previous homes. This was addressed by adding the Floor Blokker membrane directly to the plywood sub-floor upstairs, which was then covered with a hardwood top floor. While a resiliently-mounted ceiling was not installed downstairs, the membrane was still able to increase the estimated IIC in the system from the low-30s to approximately 45.

Overall, STC and IIC ratings for the home were improved at the most critical locations (and removed in locations where improvement was not necessary). Our team installed both flooring and wall applications in a single day, and returned the following day to Quality Check and ensure all installations met our strict standards.

Clean outlet cuts were made, wall-floor intersections caulked, and a debrief with the contractor performed to ensure proper installation of drywall and ultimately, superior performance of the system.

A soundproofing project of this magnitude should typically run about $3,000-$7,000, depending on the size of the home and number of floors. Since premium soundproofing membranes weigh approximately 1 pound per square foot, the logistics of moving large quantities up flights of stairs becomes time-consuming. Furthermore, wall heights and floor footprint must be taken into account to determine the required number of cuts and splices. Hiring an experienced team to design, install and/or inspect the soundproofing work makes the difference between a moderate improvement in sound attenuation and a major breakthrough!

Central Florida Hospital – Sound Study

Solving Hospital Noise Complaints

The management from a hospital in central Florida requested an assessment and potential solutions to improve their sound rating scores in their facility. Specifically, the intent was to study and improve the HCAHPS question of whether patients find their environment “Always Quiet at Night”, and the corresponding improvement in patient care quality.

Commercial Acoustics planned and executed an acoustic study on premises, and completed related research, to outline an appropriate mitigation plan for the hospital noise levels. All measurements in this sound study were completed with a Class 1 Sound Pressure Level (SPL) meter and included time- and spatial-logged data to determine exactly when and where the various noise sources are occurring. Furthermore, all events were classified by type, and any anomalies were noted.

By addressing the leading causes of sound and implementing a Noise Reduction Program, the hospital is on its way to delivering exemplary patient care in regards to sleep (in addition to other patient satisfaction metrics).

This is a problem that many, if not all, hospitals face – yet few address it comprehensively. A sound study is critical to isolate the source of each of the noise issues, then they are prioritized and mitigated individually. Many of the issues are addressed via behavioral change, while others may require architectural modifications. By implementing a mixed-approach, most hospitals may expect to achieve significant results within the first 3-6 months of a Noise Reduction effort.